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Microscopic calculation of the temperature anomaly of 
spatial correlations in liquid 4He 
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Fachbereich Physik, Universily of Siegen, 59 Siegen, Federal Republic of Germany 

Received 2 December 1991 

Abslract  We re-investigale G V Chester's model for liquid ' H e  which combines Jastrow 
factor mrrelaliow with those of the ideal Bose gas. For !he fint time, we evaluate 
Ihe s l ~ ~ c t u r e  factor S ( k ; T )  in h i s  model. This evaluation is b e d  on the optimized 
random phase approximalion frequenlly used in simple liquid theories. The ~alculated 
S( k; T )  reproduces qualilalively the k -  and Tdependence of the experimental slructure 
faclor. The temperature anomaly of liquid helium below the Xpainl cm be explained 
by the Bose gas mrrelalions. 

1. Introduction 

Below the A-transition the spatial correlations of liquid 4He display an anomalous 
temperature dependence [l-31: the order increases with temperature. In particular, 
the main peak of the experimental structure factor S( IC; T )  becomes higher and 
sharper with increasing temperature T. Close to T,, this anomalous temperature 
dependence is reversed to the normal behaviour. 

Microscopically, the spatial correlations of the system are represented by the 
density matrix. There are basically two approaches for constructing the density matrix, 
one being related to the ideal Bose gas and the other to the quasiparticle model. 

In this paper we consider a model density matrix proposed by Feynman [4] and 
Chester [5] for liquid 4He. This density matrix combines the Jastrow correlations 
with those of the ideal Bose gas (IBG). Up until now the structure factor has not 
been calculated for this model. We evaluate the structure factor by using techniques 
developed in the seventies for simple liquids. Before presenting our approach in 
more detail we briefly review other explanations of the temperature anomaly. 

The semi-macroscopic explanation by Cummings et a[ 161 assumes a condensate 
fraction n,(T) with a similar temperature dependence as in the IBG. Qualitatively 
Cummings er al argue that the condensate fraction is spatially uniform and does 
not, therefore, contribute to spatial order. Since n,( T) decreases with increasing T 
the rising number of non-condensed particles is responsible for the increased order. 
lbgether with nc, the anomalous behaviour disappears at TA. In this approach the 
structure factor S( IC; T) has not been calculated microscopically. 

Starting from Landau's quasiparticle picture the microscopic approach by 
Gaglione ef ol [q relates the anomaly to the enhanced thermal excitations of rotons. 
A finite roton lifetime is empirically introduced to account for roton-roton interac- 
tions. Slightly above TA this leads to an overdamping of the rotons and consequently 
to normal behaviour of S ( k ;  T ) .  
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The physical ideas underlying the quasiparticle and the IBG-like approach refer to 
different temperature regimes. The quasiparticle model requires, in principle, a low 
quasiparticle density; it is therefore adequate for the low-temperature region. When 
applied to the anomaly problem it has to be extended to higher temperatures, at least 
to about 2 K Approaching TA, the quasiparticle picture will eventually break down 
due to the quasiparticle interactions. On the other hand, Feynman [4] argucd that 
around TA the atoms in the liquid should in some essential aspects behave like bee 
particles. He concluded that F London's famous suggestion [SI about the connection 
between the A-transition and the Bose-Einstein condensation of the IBG is basically 
correct. 

As already mentioned, we follow the approach based on the ideas of London, 
Feynman and Chester. Our conceptual starting point is the density matrix of the 
IBG supplemented by suitable Jastrow functions. The Jastrow functions account for 
correlations due to the strong repulsion between the atoms. The IBG part displays 
a phase transition which, in this model, can be related to the temperature anomaly. 
This starting point is specified in section 2. 

The structure factor for Chester's density matrix is evaluated in a perturbation 
scheme. Our scheme is closely related to the optimized random phase approximation 
(ORPA) used in simple liquid theories. It is described in more detail in section 3. 

The decisive temperature dependent correlations are contained in the IBG part of 
the density matrix. The two-particle correlations of the IBG are reviewed in section 4. 
For the actual calculation a slightly modified IBG is introduced. 

Our numerical results for S( It; T) and their discussion are given in sections 5 
and 6, respectively. 

2. Density matrix 

The density matrix can be written in the general form: 

p( R,  R'; T) = N-' F( R )  F( R') pM( R, R'; T ) .  (1) 

Here R = ( T ] ,  . . . ,T,,,) denotes the 3N coordinates of the N atoms contained in a 
volume V. The normalization factor N is futed by T rp  = 1. At zero temperature, 
T = 0, the incoherent part becomes pM z 1, and the factor F reduces to the 
ground-state wavefunction, F = Qp. 

The Chester model [SI is defined by the following assumptions: 
(i) The function F is approximated by a product of temperature-independent 

Jastrow functions, 

This anran takes into account the correlations due to the strong repulsion between 
every pair of atoms; uiple and higher correlations are, however, neglected. The 
Jastrow functions are approximated by those of hard spheres HS 



Spatial correlations in liquid 4He 3363 

where d is the HS diameter. 

mauix of the ideal Bose gas (IBG), 
(ii) The temperature-dependent incoherent part pM is approximated by the density 

PM = PIBG(K R';T) .  (4) 

Omitting constant factors this density matrix is given by 

The summation runs over all N! permutations P of the N particle indices; the per- 
mutation of (1, ..., i, ..., N )  is denoted by (P(1), ..., P ( i ) ?  ..., P ( N ) ) .  The quantity 
AT = 2ah/d- is the thermal wavelength. 

The Chester model (1)-(5) is a plausible attempt to combine the attractive features 
of the IBG (existence of a phase transition) with the strong interactions present in 
the real liquid. It is not derived from first principles as, for example, the approaches 
by Gaglione ef a1 [7] or by Senger er a1 [lo]. But an investigation of this model can 
answer the question of whether IBG-related spatial correlations are responsible for 
the observed anomaly of the structure factor. The techniques used in answering this 
question were developed in the seventies in the field of simple liquids. By applying 
these techniques to the Chester model we are able to calculate the structure factor. 

The density matrix (1) determines the radial distribution function (RDF) g(r), 

d3r3. . . d3rN p( R, R) 
Po? 

9(r=r12) = 

where po = N / V .  Its Fourier transform yields the structure factor 

~ ( k ) = ~ + p ~  J d 3 r e x p ( i k . r )  [ g ( r ) - ~ ] .  (-4 

For calculating g and S we need the diagonal part of (1) only. The temperature 
dependence of S ( k )  = S ( k ;  7') and other quantities is frequently suppressed in the 
notation. 

Following an idea of Lado Ill] we assume the existence of a temperature- 
dependent function wT( T )  such that the diagonal part of the IBG density matrix 
may be replaced by a 'Boltzmann factor': 

The approximation of plBG by a product of two-particle factors is adequate because 
we restrict ourselves to the evaluation of two-particle correlations, (6) and (7). The 
exponential form is plausible because for boson systems the density matrix in coordi- 
nate space is non-negative. The function tuT plays the role of a dimensionless and 
temperaturedependent pseudopotential describing the IBG correlations. It is deter- 
mined [ll] such that the radial distribution functions are the same for both sides of 
(8): 

9[Precl=9[wTl (9) 
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Using (S), the diagonal part of the Chester density matrix is given by 

R Blendowske and T Fliessbach 

p ( R , R ; T ) = N N - '  n e x p [ - " ~ ( r j j ) - w T ( r i j ) ]  (10) 
i < j  

The motivation for introducing wT in (8) is that the resulting density matrix (10) 
can be treated by the diagrammatic methods of simple liquid theories. The function 
wT is used for intermediate steps only; in the final formulae the IBG correlations are 
expressed again by g[BG. 

3. Perturbation scheme 

The pair potential for the atoms in a liquid consists of a strong, short-range repulsion 
and a smoothly varying long-range attraction. It is frequently approximated by an HS- 
potential plus a residual interaction w. The two-particle correlations of the classical 
liquid are then represented by Bolrzmann factors which are of the same structure as 
the expression (10). In this expression, thc residual interaction w can be treated as 
a perturbation of the HS system. Suitable schemes for treating this perturbation have 
been developed in the theory of simple liquids [12]. 

In the Chester model, the model correlations (4) are weak and long-ranged com- 
pared to those of the Jastrow functions (2) and (3). Therefore, we can treat wT as 
a perturbation of a HS reference system, and adopt the terminology and the methods 
from the simple liquid theory [12-151. For evaluating this perturbation we use the 
oprimized random phase approximation (ORPA). Since in our model the RDF gIBG is 
given rather than the corresponding pseudopotential wT, we formulate the ORPA in 
a slightly modified way. 

The following derivation relies on the diagrammatic techniques which have been 
thoroughly investigated in the literature [12-15]. An alternative shorthand derivation 
of result (22) is given in appendix k 

For defining the ORPA we start with the diagrammatic expansion of the radial 
correlation function (RCF) h E g - 1: 

h( 1,2) =(all simple diagrams which consist of two 
white circles labelled 1 and 2, black pcircles and (12) 
f-bonds, and are free of articulation circles}. 

Here 1 and 2 stand for rl and T?,  respectively. The dimensionless Fourier transform 
of h(r12) is denoted by T(k), 

T(k) = S ( k ) - l  = p o  e x p ( i k . r ) h ( r ) d 3 r .  (13) I 
The Meyer f-function of the whole system is given by 

f ( r ) = e x p ( - u H S ( r ) - w T ( v ) ) - l .  (14) 
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The Meyer functions of the HS reference and the model system are 

fa = exp(-uHs) - 1 f, = exp(-wT) - 1 .  (15) 

Equations (14) and (15) yield 

f = f0 + fM + f O f M .  (16) 

This implies that, at most, f,f,amposite diagrams occur in the expansion (12). The 
summation of the diagrams containing solely fo or f, bonds yields the RCFS h, and 
h,, respectively. Applying the concept of a pair of reference or model articulation 
circles, a topological reduction is performed where all interaction bonds (f,,, f,) are 
replaced by correlation bonds (ho,  hM). Omitting details of the topological reduction 
1141 one obtains 

h ( p )  = ho(r) + hM(T) D[ho,hM; (17) 

where 

D ={all, at most, h,, h ,  composite diagrams 

which consist of two white circles, labelled 1 and 2, any 
number of black p-circles, at least one h,- and one (18) 
h,-bond, and contain no articulation circles and neither 
a reference nor a model articulation pair of circles.}. 

The expression (17) with (18) is still exact. The pseudopotential wT has been used 
for the intermediate steps only; in (17) it has been replaced by the (known) RCF h,. 

The random phase approximation (RPA) is equivalent to summing up the subclass 
of so-called chain diagrams in (18). Using the convolution theorem and requiring 
IT, T,I < 1 this summation yields 

As in (13), the dimensionless Fourier transforms of h, and hM are denoted by 
To = So - 1 and T, = SM - 1; the Fourier transforms of all other quantities are 
marked by hatted symbols. Using D =z D, in (17) we obtain 

~ R P A ( ~ )  = 110 + hM + DRPA (20) 

and consequently SRpA( T ) .  Writing 

SRPA(~) = So(h) + ~ S R P A ~ ~ )  (21) 

we find 
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Similarily, the radial distribution function becomes 

R Blendowske and T Fliessbach 

= + AgRPA(r)’ (23) 

where AgwA(T) is determined by the Fourier transform of a S ~ p A ( k ) .  
The result (21) with (22) is applicable to reference systems (index 0) perturbed by 

model correlations (index M). in our application the reference system will be the HS 
system, and the model will be the IBG. We remark that even for model correlations 
with a diverging Fourier transform TM(k - 0) -t 00 the function A s ~ p ~ ( k )  remains 
finite if S,(k =0)  < 1. This corresponds to the effect of repulsive force screening 

In the following we recall the arguments given in the classical theory of liquids 
for the so-called optimization procedure. We consider a 1-1s fluid (3) as a reference 
system with some perturbation. In an exact perturbation scheme the RDF must vanish 
inside the I.Is region. This is expressed by the core condifion, 

~ 1 .  

g ( r < d ) = O .  (24) 

This condition is trivially fulfilled for the HS system, go 
condition reads 

0. Applied to (U) the core 

AgwA(r < d )  E 0. (25) 

In general, this condition will  be violated due to the approximation D DRpA used 
for agRpI\.  The optimization procedure is a mcthod of healing this deficiency. 

In a valid perturbation scheme for a 1-1s reference system, the result must be 
independent of the functional form of the perturbation in the region I -  < d (we 
exclude singular functions). We are therefore free to replace h,(r) in (17) by 

Here {fa(.)} is, in principle, a complete set of basis functions. The optimization 
procedure [I21 consists now in determining the a, such that the core condition is 
fulfilled. Calculations in classical liquids have shown that the optimization procedure 
is decisive for obtaining valid results [12]; this is also confirmed by our calculations. 

For our purpose, it turns out that the set of five functions, f,(r) = T“ with n = 
0, ..., 4 forms a sufficient basis. The coefficients a, are determined by minimizing 
the positive definite functional 

(27) 
S F =  J d 3 k  2 To2 [ In(1 -Top,)+ To%]. 

The functional derivative of F yields A S , ,  = 6F/6FMM. For minimizing the devia- 
tions from (U) the conditions 6’F/6’an = 0 are required 1121. 

The optimized results are denoted by 
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and by S o R p A ( T )  = gO(T) + A S O R p A ( r ) ,  respectively. 
In order to test our perturbation scheme we performed standard Monte Carlo 

(MC) calculations for (IO). For this calculation, the IBG pseudopotential w T ( r )  has 
been determined numerically via the BBGKY equation Ill] for T 2 TA; we recall at 
this point that wT is not needed for (28). The MC calculations have been carried 
out for N = 128 particles, 3 x IO6 configurations and periodic boundary conditions. 
The result AgMc(T) agrees with AgORPA(r) within 15% in the range 3.05 A< r < 
3.95 8, This value is quite acceptable for our purpose. For T > 4.0 A the effecu 
are overlayed by the ‘noise’ of the MC-reSuh which is of the order of 1%. This noise 
makes a unique Fourier transform dilficult; therefore a standard MC method can not 
replace our perturbation scheme. 

4. Model correlations 

The two-particle correlations of the IBG have been derived many times [11,16-IS]. 
For iV free Bose particles in a volume I’ the RDF is given by 

The single-particle energies E = h 2 k ? / 2 m  determine the average occupation numbers 

‘ 130) 
1 

exp(z2  + +) - 1 
- - 1 

exp((e - p ) / k B T )  - 1 
n ( k )  = n ( k )  = 

This formula is valid for the non-condensed particles. In the last expression we have 
introduced’ the dimensionless quantities 

The chemical potential !J or, equivalently, T is fixed by the particle number condition 
N = C n ( k ) .  This condition leads to a transition temperature T, below which the 
BoseEinstein condensation sets in. This means [hat a finite fraction no = O ( 1 )  of 
all particles occupies the lowest single-particle state, 

In a given (macroscopic) volume V the lowest possible wavevector IC, is not exactly 
equal to zero. For T -+ T, the particle number condition yields !J - ~ ( k , , )  - 0. For 
simplicity we rename p - € ( I C O )  as p. Then p and T vanish at T,. The transition 
temperature T, is given by 

2 n h  
= J--- 27rm kBT, = ( v  C 3 / ? P 3  (33) 
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where w = V / N  and C3/? % 2.6124 denotes Riemann’s zeta function. We identify 
T, with the experimental temperature T,, by assuming that m in (31) is an effective 
mass [4]. 

R Blendowske and T Flicssbach 

Neglecting terms of the order 1 / N  the IBG RDF reads 

glBG(r;  T )  = 1 -k Q2(r/&-) -k 2 no Q(r/&) (34) 

where 

Fbr y > 1 the function Q decays exponentially for T # 0 and like l/y for T = 0. 
Fbr k-0 the structure factor SIBC then diverges as 1 / k  for T = TA, and 1 /k2 for 

In the following we introduce a slightly niodified IBG which leads to a more 
realistic temperature dependence of thermodynamic properties and of no( T) .  We 
expand T for small relative temperatures t = ( T -  ?‘,)/TA, 

T < TA. 

This expansion yields 

Cor the model condensate fraction 
3 C3,?/(4fi) and relates f to a‘, 

for 1 3 0 
for t < 0 

for t 3 0 
for t < 0 (37) 

no. The particle number condition yields a = 

In the IBG one has T = 0 for 1 < 0 and therefore a’ = 0. Deviating from the 
IBG the modified IBG uses T = a’ It1 with a’ # 0. Physically a’ # 0 implies a 
temperature-dependent energy gap A = a’?t?kBT for the macroscopically occupied 
single-particle state; this kind of modification has already been considered in [19]. 
The energy gap leads to a faster ( J  > 3/2) occupation of thc condensed state Cor 
decreasing temperature. 

The introduced modification of the IBG has no microscopic justification but can be 
motivated by the following reasons. First of all, the form of (36) is plausible to some 
extent because oC its simplicity and symmetry. Secondly, it removes two shortcomings 
of the IBG with respect to liquid 4He: the divergence of the structure factor Cor k i 0 
and t < 0 and the unrealistic slow decay of the specific heat (a T3I2). Similarly as 
in the roton picture, the energy gap A = a”t?kBT leads to an exponential decay 
of the specific heat and therefore to a better overall agreement in the temperature 
region 1 K < T < 2 IC 

Within the framework oC the IBG, the modcl condensate fraction no equals the 
superfluid fraction p 5 / p o .  The historical experimental fit formula [20] 

P,/Po = 1 - (1 + 111)’ f = 5.6 (39) 
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can be fairly well reproduced by n,(T) of (32) if this f = 5.13 is identified with the 
f of (38). This yields a' = 3.0. 

The expression (39) describes the data roughly in the range between 1 and 2K; 
it is qualitatively wrong in the critical region and in the phonon-dominated region. 
In this respect the IGB as well as the modified one fail. For T = 1, ..., 2 K it is, 
however, possible to identify no with pJpo if U' # 0 is admitted. In [Z l ]  the relation 
between no and pJp0 is investigated in more detail including the critical region; this 
leads to the same value a' = 3.0. It should be noted that the model condensate 
fraction no defined by (32) is not identical to what is usually called the condensate 
fraction n,; in particular no = 1 for T = 0 is depleted by the Jastrow factors to 
about n, zz 10%. 

Having k e d  the value of a' we may express the assumed modification by 

IBG 

3.0 modified IBG. 

We emphasize that this is indeed a minor modification. All formulae displayed in this 
section are valid for the IBG as well as for the modified IBC. For T 2 TA the IBG 
and the modified IBG coincide. The structure of the spatial correlations in the IBG 
are determined by the many-body symmetry entering the calculation of the RDF, this 
structure is not affected by a' # 0. The parameter a' has, however, an influence on 
the temperature dependence of these correlations. 

We conclude this section by a discussion of the range of validity of the model 
correlations. The model does not include phonons which are dominant below 1 K; 
therefore we have to restrict ourselves to T > 1 K In the region 1 to 2 K the mod- 
ified IBG reproduces fairly well the thermodynamic properties and should therefore 
contain the relevant temperature-dependent correlations. For T ii: TA the model 
displays a phase transition and should therefore contain at least part of the relevant 
correlations. The model does, however, not describe the specific correlations causing 
the logarithmic singularity; the temperature dependence of the specific heat indicates 
that these correlations are dominant for It1 6 0.01 and still important for 111 4 0.1. 
Summarizing, the model correlations might be quantitatively correct between 1 and 
2 K, and qualitatively correct across the phase transition. 

5. Results 

The ORPA result (28) together with the model correlations specified in section 4 
defines our theoretical structure factor, 

S l h e o r ( k  T) = StheoAk) + G , , o , ( k  T )  (41) 
where 

where the subscripts 0 and M denote the HS model system and the modified IBG 
respectively. This theoretical expression is compared to the experimental structure 
factor 

Se,(k;T)= Seq(k; 1 I < ) +  AScq,(k;7).  (43) 
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Our model is expected to describe the relevant temperature-dependent effects above 
1 K Therefore we adjust the parameters of our HS reference system to the experi- 
mental structure factor at 1 K This yields a HS diameter d = 3.0 8, and a packing 
fraction of q = 0.26. As usual, the structure factor S,,(k) = S,,(lC) is determined 
by the PI' equation [12]. 

R Blendowske and T Fliessbach 

1.5 , I 

- Sb 
k [A-'] 

0.0 
0 1 2 J 

Figure 1. The experimenlal Structure factor Scv(k: l .QK)  (fmm 121) is mmpared 10 
the SlNclUre  faaor S ~ s ( k )  of a hard sphere syslem. Since the HS model sere3 as the 
reference system its parameten @ a d  sphere diameter and packing traction) are adjusted 
in order to minimize the deviations 

In figure 1 the calculated result Slbcor = SHs is compared to Sev(l K). The overall 
agreement shows that the experimental structure factor can indeed be simulated by 
the one of a classical HS Ruid with suitable parameters. Of course, this is not a theory 
for S(k;l K). For a determination of S(k;1 K) from first principles [22] one has to 
take into account quantum mechanical etfects, the phonon contributions [23] and the 
attractive part of the interaction. 

Our aim is the determination of the additional temperature-dependent effects 
due to the IGB related correlations. For this purpose we need a reference system. 
The optimization procedure requires in particular a HS reference system; this means 
that in a consistent treatment we cannot use S,,(k;l K) instead of S,. For such a 
reference system the agreement in figure 1 is quite satisfactory. 

The temperature-dependent part ASlhmr( k; T) of the theoretical structure factor 
is determincd by To = So - 1 and T,. Here To refers to the ns referencc system, 
and F, is the Rurier transform of Z,. The function i;, is the optimized model RCF 
h,. The model correlations are that of the modified IBG; they are defined by (34) 
and (35). Details of the numerical evaluation of the model correlations are given in 
appendix B. We use the experimental values for the number density po = N / V  = 
0.022 

Figure 2 presents the results for A S , , , , , ( k ; T , )  with and without optimization. 
The large difference between these two functions demonstrates the crucial role of 
the core condition. The result without optimization is unphysical because the corre- 
sponding Agtheor( T )  does not vanish for T < d. 

- 

and for the transition temperature TA = 217 K. 
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0.02 I I 

oat 

0.00 

-OB1 

-0.02 
0.0 1.0 2.0 s.0 

Figure 2. The non-oplimized result for AS,,.,( I C ;  TA) is "pared to the optimized 
one. Only the optimized result meeb the physical mre mndilion. ?he drastic dillerenfes 
show that h e  optimizalion pmcedure is indispensable. 

I I 

Figure 3. rile k. and Tdependence of 4Scv(k;T) is 
qualitatively reproduced by the raiculated result 4S,..,. 
The absolute values of AS,,,, are, however, too Small ty 
a factor 2 10 3. Wr used different vertical scales tor the 
two quantities in order to emphasize Lhe " n o n  features. 

In figure 3 the k-dependence of ASiI,,,, is compared to AS,, for two temper- 
ature values. The model prediction AS,,,,, reproduces the k-dependence of ASerp 
remarkably well. It yields a central peak at about the correct position, and describes 
the oscillations and the k - 0 behaviour fairly well. The position kmax x 2rr /d  of 
the main peak is essentially determined by the HS diameter d; it is not a specific 
property of the model correlations. We remark that the plateau of AS,, around 
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k % a8 A-' is an artefact. It stems from the connection of neutron scattering data 
[2] for larger k-values and x-ray data for smaller 12-values. see figure 14 of [3]. 

The absolute values of ASthwr are too small by a factor of 2 to 3. This discrepancy 
is outside the range of experimental uncertainties of about i O . 0 1  for the absolute 
value of ASq. (The errors of Sq itself are estimated to be smaller than 1% 
[2].) It is also outside the range of the errors due to the approximations used for 
the evaluation in the given model; these errors are about 15% for the ORPA (last 
paragraph of section 4) and about 10% due to the uncertainty in the parameters of 
the HS reference system. The discrepancy in the absolute size of the effect indicates 
that part of the correlations is missing in our model. One might expect that these are 
the specific correlations responsible for the logarithmic singularity; they are expected 
to yield a major contribution in the range 121 < 0.1. 

The model prediction ASlheor reproduces qualitatively also the temperature de- 
pendence of ASev, figure 3. As a function of temperature, AS,&, has its maximum 
value slightly below TA, it decreases with decreasing temperature, and disappears 
below T 1.3 K These properties agree with that of the experimentally observed 
anomaly. The decay of AS,,,,, with decreasing temperature is, however, tcm slow. 
The central peak of ASrhpoi reaches its half value at T = 1.74 K compared to roughly 
T % 1.9 K for AS,,. The decay of ASlhcar depends on the value of the parameter 
a'. At TA the IBG and the modified IBG coincide. For the pure IBG (a' = 0) the 
decay sets in at a lower temperature and is less pronounced. On the other hand, a 
larger value of a' makes the decay steeper. We prefer not to use a' as a fit parameter 
for this detail because the over-slow fall-off is probably connected with the missing 
critical correlations. 

There is a corresponding decay of ASlheor for increasing temperature above TA; 
the k- and Itldependences are similar for t < 0 and 1 > 0. The reproduction of 
AS,, for T > TA is of the same quality as that shown in figure 3. 

Summarizing, we state that the anomaly can be qualitatively explained by the 
correlations of the modified IBG. We emphasize that all parameters of the model are 
fixed by experimental quantities which are independent of ASew. 

R Blendowske and T Fliasbach 

6. Discussion 

The model proposed by Chester is the most simple but realistic ansae for the density 
matrix of 4He with a phase transition at TA. In this model, the main features of the 
considered anomaly are reproduced, in particular its 12-dependence, its temperature 
range and its reversal close to TA. 

The model fails in reproducing the absolute values of AScxp by a factor of 2 to 3. 
This is not too surprising because the entropy of the IBG (modified or not) at TA 
is 1.7 times higher than the experimental one. This means that in liquid helium 
the particles are more ordered or correlated than in the IBG model. The missing 
correlations might be those which are responsible for the logarithmic singularity at 

Around k x 2 A-' the results by Gaglione er a1 [7] are quantitatively superior to 
om. Their results depend, however, on the empirical expression for roton lifetimes. 
Our results are, on the other hand, essentially fixed by the IBG correlations. The 
underlying physical ideas are quite different: Gaglione el al use the quasiparticle 
model where an overdamping of the rotons leads to the reversal of the temperature 

TA. 
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anomaly. We use the IBG plus Jastrow correlations where the anomaly is related to 
the phase transition of the IBG. 

Discussing the approach by Cummings e? a1 161, Gaglione es a1 [7] proposed to 
measure S(k; T) along different isochores. In the quasiparticle model one expects 
that the anomaly effect increases with the density. In the model of Cummings er 
a1 a decrease is expected because all theories predict a reduction of the condensate 
fraction nc with enhanced density. In our description the anomaly is related to the 
model condensate fraction, but its effect on S ( k )  i3 decisively influenced by the 
reference system (in particular, by the core condition). For a higher density the effect 
of the core condition will increase. Preliminary calculations show a slight increase of 
AS,,, with the density leading to a qualitative agreement with Gaglione et nl . 

The otherwise successfull variational ab inirio calculations of Senger es a1 [lo] 
display neither a phase transition at TA nor a reversal of the temperature anomaly. 
From our point of view, their nnsalz for the density matrix should be supplemented 
by IBG related correlations. 

The path-integral computations of Ccperley and Pollock [24] are in good agree- 
ment with the experimental RDF g(r; T) down to 1 K The rcsults for g ( r ;  T) contain 
some indication of an anomalous behaviour. The structure factor S( k; T) in which 
the anomaly effect is more obvious has, however, not been evaluated. 

The exchange symmetry plays a decisive role for the A-transition; this follows 
from the absence of this transition in liquid 3He. The IBG is the simplest model 
which takes the symmetry effects fully into account. The IBG yields a phase transition 
which exhibits a number of similarities to the &transition; moreover, the unusual 
hydrodynamic properties of He I1 can be understood in this model [U]. In some 
respects the IBG is similar to the nuclear shell model which is a quite successfull ideal 
gas model for the strongly interacting nuclear liquid. Both ideal gas models are, of 
course, unable to reproduce the two-particle correlations caused by the interaction. 
A simple remedy of this failure is to supplement these modcls by Jastrow factors. 
For the IBG this leads to the Chester model in which an at least semi-quantitative 
description of the two-body correlations is possible. As we have demonstrated this 
model is able to explain the tempcrature anomaly. This success might encourage 
renewed investigations of IBG related models. 

Appendix A. RPA structure factor 

In this appendix we present a shorthand derivation of the main result (21) of section 3 
without using diagrammatic techniques. 

We consider a reference system with the structure factor So and a perturbing 
(dimensionless) potential w( r). The structure factor S of the whole system can be 
written as [I21 

S =  SO 
1 - ( E -  E,) So' (44) 

Here E and E, are the Fourier transforms of the direct correlation functions for 
the whole and the reference sytem, respectively. They are defined by the Fourier 
transform of the Omstein-Zemicke relation, 

T(k) E( k) = - 
S( k) . (45) 
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The canonical way of introducing the RPA is 

C - C 0 ~ - W .  (46) 

Using the linearized HNC equation for the model correlations one obtains 

CM % -w.  (47) 

Combining the last two equations and using (45) for E ,  we get 

We insert this in (44), 

(48) 

(49) 

This is the wanted result. 

Appendix B. Evaluation of IIIG correlations 

In this appendix we describe the numerical evaluation of the structure factor and the 
RDF of the IBG. All formulae apply equally well to the modified IBG. 

For N spinless bosons the structure factor is given by 

The operators U: ,  up create or annihilate a particle in the state with momentum p. 
They obey the commutation rule [U : ,  u p ]  = &ip,p,. The brackets in (50) denote the 
quantum mechanical expectation value lor the many-body states I . . . ,  u ( p ) ,  ...) and 
the statistical expectation value. The statistical average is effectively performed by 
replacing the occupation numbers v ( p )  by their expectation valufs ( u ( p ) )  = n ( p ) .  
The average occupation numbers n ( p )  are given by (30) and (32). 

Separating off the condensed particles, S,( q )  becomes 

As in section 3, k, denotes the lowest possible single particle state. The part T, 
is determined by (30) and (32). For evaluating the conrribution T,, of the non- 
condensed particles we introduce polar Coordinates and replace the summation by an 
integration: 
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The wavevector k is written as k = h' + k" with k"q = 0, and U = V/N denotes 
the volume per particle. We insert the average occupation numbers (30) and (32), 
use the quantities 

a ( k ' )  =exp(-6k'*) @(k') = exp(-6(k'?fqZ))  

and perform the integration over k": 

- U 

P 
T dk' - 

We replace k' by 12' - q / 2 ,  and introduce y = 26qk' and y = q f i .  This yields 

where 

and 

The integrals in (55) and (57) are evaluated numerically. The substitution &U* = 
y-7' makes the logarithmic singularity at y = 0 numerically integrable. The integrals 
remain finite for r - 0 and q i 0 because the l/q-factor has been split off. This 
completes the evaluation of the structure factor. 

For the model RDF (34) we have to compute the function Q ( r )  which can be 
expressed by the sum (35) or by the integral 

k sin kr 
exp(T2 + 6@) - 1 ' 

Q ( r )  = - - 

For small values of T this integral is solved numerically. For large r,  say r/AT > 1, 
this is no longer possible because the integrand oscillates too rapidly. We use then 
the expansion 

where 

and x = r/XT. This expansion may be Found in 1161, equation (2.24). 
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