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Microscopic calculation of the temperature anomaly of
spatial correlations in liquid ‘He

R Blendowske and T Fliesshach
Fachbereich Physik, University of Siegen, 59 Siegen, Federal Republic of Germany

Received 2 December 1991

Abstract. We re-investigate G V Chester’s model for liquid * He which combines Jastrow
factor correlations with those of the ideal Bose gas. For the first time, we evaluate
the structure factor S(k; T) in this model. This evaluation is based on the optimized
random phase approximation frequently used in simple liquid theories. The calculated
S(k; T) reproduces qualitatively the k- and T-dependence of the experimental structure
factor. The temperature anomaly of liquid helium below the A-point can be explained
by the Bose gas correlations.

1. Introduction

Below the A-transition the spatial correlations of liquid *He display an anomalous
temperature dependence [1-3): the order increases with temperature. In particular,
the main peak of the experimental structure factor S(k;7T) becomes higher and
sharper with increasing temperature 7. Close to T, this anomalous temperature
dependence is reversed to the normal behaviour.

Microscopically, the spatial correlations of the system are represented by the
density matrix. There are basically two approaches for constructing the density matrix,
one being related to the ideal Bose gas and the other to the quasiparticle model,

In this paper we consider a model density matrix proposed by Feynman [4] and

" Chester [5] for liquid He. This density matrix combines the Jastrow correlations
with those of the ideal Bose gas (1BG). Up until now the structure factor has not
been calculated for this model. We evaluate the structure factor by using techniques
developed in the seventies for simple liquids., Before presenting our approach in
more detail we briefly review other explanations of the temperature anomaly.

The semi-macroscopic explanation by Cummings ¢t a/ [6] assumes a condensate
fraction n (T) with a similar temperature dependence as in the IBG. Qualitatively
Cummings e al argue that the condensate fraction n  is spatially uniform and does
not, therefore, contribute to spatial order. Since n (7T") decreases with increasing T
the rising number of non-condensed particles is responsible for the increased order.
Together with 7., the anomalous behaviour disappears at T,. In this approach the
structure factor S(k; T) has not been calculated microscopically.

Starting from Landau’s quasiparticle picture the microscopic approach by
Gaglione ef al [7] relates the anomaly to the enhanced thermal excitations of rotons.
A finite roton lifetime is empirically introduced to account for roton-roton interac-
tions. Slightly above T, this leads to an overdamping of the rotons and consequently
to normal behaviour of S(k; 7).
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The physical ideas underlying the quasiparticle and the IBG-like approach refer to
different temperature regimes. The quasiparticle model requires, in principle, a low
quasiparticle density; it is therefore adequate for the low-temperature region. When
applied to the anomaly problem it has to be extended to higher temperatures, at least
to about 2 K Approaching T, the quasiparticle picture will eventually break down
due to the quasiparticle interactions. On the other hand, Feynman [4] argued that
around 7', the atoms in the liquid should in some essential aspects behave like free
particles. He concluded that F London’s famous suggestion [8] about the connection
between the A-transition and the Bose-Einstein condensation of the IBG is basically
correct.

As already mentioned, we follow the approach based on the ideas of London,
Feynman and Chester. Our conceptual starting point is the density matrix of the
IBG supplemented by suitable Jastrow functions. The Jastrow functions account for
correlations due to the strong repulsion between the atoms. The IBG part displays
a phase transition which, in this model, can be related to the temperature anomaly.
This starting point is specified in section 2.

The structure factor for Chester’s density matrix is evaluated in a perturbation
scheme. Our scheme is closely related to the optimized random phase approximation
(OoRPA) used in simple liquid theories. It is described in more detail in section 3.

The decisive temperature dependent correlations are contained in the 1BG part of
the density matrix. The two-particle correlations of the [BG are reviewed in section 4.
For the actual calculation a slightly modified 18G is introduced.

Our numerical results for S(k; T) and their discussion are given in sections 5
and 6, respectively.

2. Density matrix

The density matrix can be written in the general form:
p(R,R;TY=N"'F(R) F(R'} pu( R, R'; T). n

Here R = (r,,...,ry) denotes the 3N coordinates of the /N atoms contained in a
volume V. The normalization factor A is fixed by Tr p = 1. At zero temperature,
T == 0, the incoherent part becomes p,; = 1, and the factor F reduces to the
ground-state wavefunction, F = W .

The Chester model [5] is defined by the following assumptions:

(i) The function F is approximated by a product of temperature-independent
Jastrow functions,

F(R}—Hexp( ulry }) ry ==l )

1<

This ansarz takes into account the correlations due to the strong repulsion between
every pair of atoms, triple and higher correlations are, however, neglected. The
Jastrow functions are approximated by those of hard spheres Hs

0 for » < d

3
1 for r > d ®)

exp{—upg(r)) = {
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where d is the HS diameter.
(i) The temperature-dependent incoherent part py, is approximated by the density
matrix of the ideal Bose gas (IBG),

Py = PG (R, R'; T). )

Omitting constant factors this density matrix is given by

p[BG( R, R’;T) [s.4 Zexp ( /\ 37 Z { T.P(g ]2) . (5)
P

The summation runs over all N! permutations P of the IV particle indices; the per-
mutation of (1,...,1,..., V) is denoted by ( P(1},..., P(%),..., P(N)). The quantity
Ap = 2#5/\/27rkaT is the thermal wavelength.

The Chester model (1)—(5) is a plausible attempt to combine the atiractive features
of the IBG (existence of a phase transition) with the strong interactions present in
the real liquid. It is not derived from first principles as, for example, the approaches
by Gaglione e al [7] or by Senger et a! [10]. But an investigation of this model can
answer the question of whether IBG-related spatial correlations are responsible for
the observed anomaly of the structure factor. The techniques used in answering this
question were developed in the seventies in the field of simple liquids. By applying
these technigues to the Chester model we are able to calculate the structure factor.

The density matrix (1) determines the radial distribution function (RDF) g(),

N{(N-1)
glr=r) = ~—-—5§-—-——/d3r3...d3rN p(R, R) (6)
0
where p, = N/V. Its Fourier transform yields the structure factor

S(k):l-i—pofdsr exp(ik-7v) [g(r)-1]. N

For calculating ¢ and S we need the diagonal part of (1) only. The temperature
dependence of S(k) = S5(k;T) and other quantities is frequently suppressed in the
notation.

Following an idea of Lado {11] we assume the existence of a temperature-
dependent function wy(r) such that the diagonal part of the IBG density matrix
may be replaced by a ‘Boltzmann factor”

N

piag (R, R; T) = [] exp(~wy(ri;)). (8)

i<j

The approximation of pjgq by a product of two-particle factors is adequate because
we restrict ourselves to the evaluation of two-particle correlations, (6) and (7). The
exponential form is plausible because for boson systems the density matrix in coordi-
nate space is non-negative. The function wq plays the role of 2 dimensionless and
temperature-dependent pseudopotential describing the IBG correlations. It is deter-
mined [11] such that the radial distribution functions are the same for both sides of

(8):

9lpmcl=9lwy) )
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Using (8), the diagonal part of the Chester density matrix is given by

p(R, R T) m N1 ] exp [ ~ws(ry;) = wr(ry;) ] (10)
i<y
N = de Hexp{—uns('t';j) - “’T(”'i,‘)]- (1)
i<y

The motivation for introducing w, in (8) is that the resulting density matrix (10)
can be treated by the diagrammatic methods of simple liquid theories. The function
wy is used for intermediate steps only; in the final formulae the IBG correlations are
expressed again by gigg.

3. Perturbation scheme

The pair potential for the atoms in a liquid consists of a strong, short-range repulsion
and a smoothly varying long-range attraction. It is frequently approximated by an Hs-
potential plus a residual interaction w. The two-particle correlations of the classical
liquid are then represented by Bolizmann factors which are of the same structure as
the expression (10). In this expression, the residual interaction w can be treated as
a perturbation of the Hs system. Suitable schemes for treating this perturbation have
been developed in the theory of simple liquids [12].

In the Chester model, the model correlations (4) are weak and long-ranged com-
pared to those of the Jastrow functions (2) and (3). Therefore, we can treat w.p as
a perturbation of a HS$ reflerence system, and adopt the terminology and the methods
from the simple liquid theory [12-15). For evaluating this perturbation we use the
optimized random phase approximation (ORPA). Since in our model the RDF gige; i8
given rather than the corresponding pseudopotential wq., we formulate the ORPA in
a slightly modified way.

The following derivation relies on the diagrammatic techniques which have been
thoroughly investigated in the literature [12-15]. An alternative shorthand derivation
of result (22) is given in appendix A

For defining the ORPA we start with the diagrammatic cxpansion of the radijal
correlation function (RCF) h =g — 1:

h(1,2) ={all simple diagrams which consist of two
white circles labelled I and 2, black p-circles and (12)

f-bonds, and are free of articulation circles}.

Here 1 and 2 stand for », and r,, respectively. The dimensionless Fourier transform
of h(r,) is denoted by T(#&),

T(k) = S(k)—=1= pu/exp(ik-r)h(r) d3r. (13)

The Meyer f-function of the whole system is given by

flr) = exp(—uyg(r) — wp(r)) = 1. (14)
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The Meyer functions of the Hs reference and the model system are

fo=exp(—uyg) — 1 fu =exp(—wp) - 1. (15)
Equations (14} and (15) yield
f=fo+f1\.1+ fufm- (16)

This implies that, at most, f, fy,-composite diagrams occur in the expansion (12). The
summation of the diagrams containing solely f, or f,, bonds yields the RCFs h, and
hy respectively. Applying the concept of a pair of reference or model articulation
circles, a topological reduction is performed where all interaction bonds (f,, fy) are
replaced by correlation bonds (4, hy). Omitting details of the topological reduction
[14] one obtains

h(r}) = ho(r) + hy{(r) + Dihg, hy; 7l 17
where

D ={all, at most, h,, h); composite diagrams
which consist of two white circles, labelled I and 2, any
number of black p-circles, at least one k- and one (18)
hg-bond, and contain no articulation circles and neither
a reference nor a model} articulation pair of circles.}.
The expression (17) with (18) is still exact. The pseudopotential w, has been used
for the intermediate steps only; in (17) it has been replaced by the (known) RCF hy,.
The random phase approximation (RPA) is equivalent to summing up the subclass

of so-called chain diagrams in (18). Using the convolution theorem and requiring
| Ty Tyl < 1 this summation yields

Tp Ty

Dgpa = (Sy + Su) -7, Ty (19)

As in (13), the dimensionless Fourier transforms of h; and h,, are denoted by
Ty = Sy — 1 and Ty = Sy — 1; the Fourier transforms of all other quantities are
marked by hatted symbols. Using D = Dgp, in (17) we obtain

hrpa(r) = fio + Ay + Drea (20)
and conseguently Sgpa (7). Writing

Srea (k) = Sy(k) + ASgpalk) (21)
we find

Ty 5

ASgppalk) = Ty + Drpa = -7,

(22)
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Similarily, the radial distribution function becomes

grralr) = go{7r) + Agrpalr). (23)

where Aggpa(r) is determined by the Fourier transform of A Sppa(k).

The result (21) with (22) is applicable to reference systems (index () perturbed by
model correlations (index M). In our application the reference system will be the Hs
system, and the model will be the 1BG. We remark that even for model correlations
with a diverging Fourier transform T},(k — 0) — oo the function A Sgpa (k) remains
finite if Sy(k=0) < 1. This corresponds to the effect of repulsive force screening
[15].

In the following we recall the arguments given in the classical theory of liquids
for the so-called optimization procedure. We consider a Ws fluid (3) as a reference
system with some perturbation. In an exact perturbation scheme the RDF must vanish
inside the Hs region. This is expressed by the core condition,

g(r < d)=0. (24)

This condition is trivially fulfilled for the Hs system, g, = 0. Applied to (23) the core
condition reads

Aggreal(r < d) =0. (25)

In general, this condition will be violated due to the approximation D & Dppa used
for Agrpa. The optimization procedure is a method of healing this deficiency.

In a valid perturbation scheme for a MS reference system, the result must be
independent of the functional form of the perturbation in the region r < d (we
exclude singular functions). We are thercfore free to replace Ay(r) in (17) by

_ hy(r) forr > d
hy = {Zan frlr} forr<d- ; (26)

13

Here {f,(r)} is, in principle, a complete set of basis funciions. The optimization
procedure [12] consists now in determining the a, such that the core condition is
fulfilled. Calculations in classical liquids have shown that the optimization procedure
is decisive for obtaining valid results [12]; this is also confirmed by our calculations.

For our purpose, it turns out that the set of five functions, f,(r) = »" with n =
0,....4 forms a sufficient basis. The coefficients a, are determined by minimizing
the positive definite functional

F=fdsk%% [1n(1-Tof“M)+TO§"M . 27

The functional derivative of F yields ASgpy = §F/§ T, For minimizing the devia-
tions from (25} the conditions 8 F'f/3a, = 0 are required {12].
The optimized results are dcnoted by

s 2
§ 'FM SO_" - - Lomo L T (28)

S Y= S,(EY+ AS kY =t e -
orpalk) ol k) orralk) T
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and by goRpA(‘l") = gu("f"') + AQORPA(T‘), respectively.

In order to test our perturbation scheme we performed standard Monte Carlo
(MC) calculations for (10). For this calculation, the IBG pseudopotential w(r) has
been determined numerically via the BBGKY equation [11] for T > T,; we recall at
this point that wq is not needed for (28). The MC calculations have been carried
out for N = 128 particles, 3 x 10° configurations and periodic boundary conditions.
The result Agye(r} agrees with Aggrpa(r) within 15% in the range 3.05 A< r €
3.95 A. This value is guite acceptable for our purpose. For » > 4.0 A the effects
are overlayed by the ‘noise’ of the McC-results which is of the order of 1%. This noise
makes a unique Fourier transform difficult; therefore a standard MC method can not
replace our perturbation scheme.

4. Model correlations

The two-particle correlations of the IBG have been derived many times [11,16-18].
For N free Bose particles in a volume V the RDF is given by

H , 2 , .Y 2
k k

The single-particle energies & = #%k?/2m determine the average occupation numbers

3 1

n(k) = n(k) = exP((E - #)/kBT) -1 = €!>¢I)(i?32 + "'2) -1’

(30)

This formula is valid for the non-condensed particles. In the last expression we have
introduced the dimensionless quantities

2_ __# 22— EB) KRS Af
Y T kgT T 2mkgT T 4xw

o 1)

k. 31y

The chemical potential ¢ or, equivalently, r is fixed by the particle number condition
N = %" n(k). This condition leads to a transition temperature 7. below which the
Bose-Einstein condensation sets in. This means that a finite fraction n, = O(1) of
all particles occupies the lowest single-particle state,

nlky) g~ nl)

N Forrd N

(32)

n0=

In a given (macroscopic) volume V' the lowest possible wavevector k, is not exactly
equal to zero. For T — T, the particle number condition yields u — £(k,) — 0. For
simplicity we rename g — e(k,) as p. Then p and 7 vanish at 7,. The transition
temperature T, 15 given by '

2mh

S A .,1/3
S Varedy )

(33)
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where v = V/N and (3, = 2.6124 denotes Riemann’s zeta function. We identify
T, with the experimental temperature T, by assuming that m in (31) is an effective

mass (4].
Neglecting terms of the order 1/ the 1BG RDF reads
giBc(r; T) = 1+ Q¥(r/Az) + 21, Q(r/A7) (34)
where
xp(—n7? - nyi/n
Qy) = —52 e

For y >» 1 the function @ decays exponentially for 70 and like 1/y for = = 0.
For k—0 the structure factor Sy then diverges as 1/k for T = T, and 1/k* for
T < TA.

In the following we introduce a slightly modified 1BG which leads to a more
realistic temperature dependence of thermodynamic properties and of ny(7T). We
expand 7 for small relative emperatures ¢ = (T - T,)/T,,

o) oo, s
a|t|+ O(t?) fort <0
This expansion yields
0 fort >0
= 3
° {flil-i-(?(t'-’) for1 <0 (37)

for the model condensate fraction n,. The particle number condition yields & =
3 (3/0/(4y/m) and relates f 1o a’,

3 L 2VE :
id 38
f=35+ G (38)

In the IBG one has v = 0 for ¢ < 0 and therefore a’ = 0. Deviating from the
IBG the modified IBG uses 7 = a’|t| with a' # 0. Physically o’ 7 0 implies a
temperature-dependent energy gap A 282kgT for the macroscopically occuplcd
single-particle state; this kind of modlﬁcation has already been considered in [19].
The energy gap leads 10 a faster (f > 3/2) occupation of the condensed state for
decreasing temperature.

The introduced modification of the 18G has no microscopic justification but can be
motivated by the following reasons. First of all, the form of (36) is plausible to some
extent because of its simplicity and symmetry. Secondly, it removes two shortcomings
of the IBG with respect to liquid ‘He: the divergence of the structure factor for & — 0
and ¢ < 0 and the unrealistic slow decay of the specific heat (oc T%/2), Similarly as
in the roton picture, the energy gap A = a’t?kT leads to an exponential decay
of the specific heat and therefore to a better overall agreement in the temperature
region 1K < T < 2K

Within the framework of the IBG, the model condensate fraction n, equals the
superfluid fraction p,/p,. The historical experimental fit formula [20]

plog=1-(1+ 1ty  f=56 (39)
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can be fairly well reproduced by n,(T) of (32) if this f = 5.6 is identified with the
f of (38). This yields a' = 3.0.

The expression (39) describes the data roughly in the range between 1 and 2K
it & qualitatively wrong in the critical region and in the phonon-dominated region.
In this respect the IGB as well as the modified one fail. For T = 1, .., 2 K it is,
however, possible to identify ng with p,/p, if «' # 0 B admitted. In [21] the relation
between ng and p./p, is investigated in more detail including the critical region; this
leads to the same value o’ = 3.0. It should be noted that the model condensate
fraction n, defined by (32} is not identical to what is usually called the condensate
fraction ng; in particular ny = 1 for T = 0 is depleted by the Jastrow factors to
about n, = 10%.

Having fixed the value of ¢’ we may express the assumed modification by

o = {0 IBG . (40)
3.0 modified IBG. ‘

We emphasize that this is indeed a minor modification. All formulae displayed in this
section are valid for the (BG as well as for the modified 1BG. For T > T, the IBG
and the modified IBG coincide. The structure of the spatial correlations in the IBG
are determined by the many-body symmetry entering the caleulation of the RDF; this
structure is not affected by a’ ¥ 0. The parameter a’ has, however, an influence on
the temperature dependence of these correlations.

We conclude this section by a discussion of the range of validity of the model
correlations. The model does not include phonons which are dominant below 1 K;
therefore we have to restrict ourselves to 7 > 1 K In the region 1 to 2 K the mod-
ified IBG reproduces fairly well the thermodynamic properties and should therefore
contain the relevant temperature-dependent correlations. For T = T, the model
displays a phase transition and should therefore contain at least part of the relevant
correlations. The model does, however, not describe the specific correlations causing
the logarithmic singularity; the temperature dependence of the specific heat indicates
that these correlations are dominant for |¢| € ¢.01 and still important for |¢| £ 0.1.
Summarizing, the model correlations might be quantitatively correct between 1 and
2 K, and qualitatively correct across the phase transition.

5. Results

The ORPA result (28) together with the model correlations specified in section 4
defines our theoretical structure factor,

Stheor (K5 T) = Sipeor (k) + A Stpeor (K; T) (4#1)
where
Ty S¢
1-T; Ty
where the subscripts 0 and M denote the HS model system and the modified IBG

respectively. This theoretical expression is compared to the experimental structure
factor

Steor(£) = Sy(k) A Sipeor (k3 T) = (42)

Sup(ki T) = Sep (s 1K) + A S, (1 T). (43)
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Our model is expected to describe the relevant temperature-dependent effects above
1 K. Therefore we adjust the parameters of our HS reference system to the experi-
mental structure factor at 1 K. This yields a Hs diameter d = 3.0 A and a packing
fraction of n = 0.26. As usual, the structure factor Sy(k) = Syg(k) is determined
by the PY equation [12].

035

o

L
[+ 1 2 3 [ ]

0.0

Figure 1. The experimental structure factor Seq(£:1.0K} (from [2]} is compared to
the structure factor Syug(k) of a hard sphere system. Since the HS model serves as the
reference system its parameiers (hard sphere diameter and packing fraction) are adjusted
in order to minimize the deviations. o

In figure 1 the calculated result Sy, = Syg is compared t© S, (1 K). The overall
agreement shows that the experimental structure factor can indecd be simulated by
the one of a classical HS fluid with suitable parameiers. Of course, this s not a theory
for $(k;1K). For 2 determination of S(k;1K) from frst principles [22] one has to
take into account quantum mechanical effects, the phonon contributions [23] and the
attractive part of the interaction.

Our aim is the determination of the additional temperature-dependent effects
due to the IGB related correlations. For this purpose we need a reference system.
The optimization procedure requires in particular a HS reference system; this means
that in a consistent treatment we cannot use S, (k1K) instead of Syg. For such a
reference System the agreement in figure 1 is quite satisfactory.

The temperature-dependent part AS, .. (k: T) of the theoretical structure factor
is determined by T, = 5; -~ 1 and TM. Here ¥, refers to the HS reference system,

and TT“M is the Fourier transform of 4,,. The function EM is the optimized model RCF
hy. The model correlations are that of the modified IBG; they are defined by (34)
and (35). Details of the numerical evaluation of the model correlations are given in
appendix B. We use the expcrimental values for the number density py = N/V =
0.022 A-2 and for the transition temperature Ty = 2.17 K

Figure 2 presents the results for A S, (k; T,) with and without optimization.
The large difference between these two functions demonstrates the crucial role of
the core condijtion. The result without optimization is unphysical because the corre-
sponding Agy..,( ) does not vanish for » < d.
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0.02 T T T T
A8 theer
001 -
" \ﬂ
=001 =
—=—— pptimized
- nomoptimized k [A"J
-0.02 1 [l 1 ] 1 1
0.0 1.0 2.0 30

Figure 2. The non-optimized resull for A Sy (k; Ty) is compared to the optimized
one. Only the oplimized result meels the physical core condition. The drastic differences

show that the optimization procedure is indispensable.

1 ] T T T L]

—i— T =015K

0.04

w-u-a T 167K

Figure 3. The k- and T-dependence of ASeq(k;T) is
qualitatively reproduced by the calculated result ASy..
The absolute values of A Sy, are, however, too small by
a factor 2 10 3. We used different vertical scales for the
wWwo quantities in order to emphasize the common features.

In figure 3 the k-dependence of A S, is compared to AS,,, for two temper-
ature values. The model prediction A Sy, reproduces the k-dependence of AS,,
remarkably well. It yields a central peak at about the correct position, and describes
the oscillations and the & — 0 behaviour fairly well. The position k., = 27/d of
the main peak is essentially determined by the HS diameter d; it is not a specific
property of the model correlations. We remark that the plateau of AS,,, around
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ke~ 0.8 A-1is an artefact. It stems from the connection of neutron scattering data
{2] for larger k-values and x-ray data for smaller k-values, see figure 14 of [3}.

The absolute values of A Sy, are too smali by a factor of 2 to 3. This discrepancy
is outside the range of experimental uncertainties of about £0.01 for the absolute
value of AS,,. (The errors of S, itself are estimated to be smaller than 1%
[2]) It is also outside the range of the errors due to the approximations used for
the evaluation in the given model; these errors are about 15% for the ORPA (last
paragraph of section 4) and about 10% due to the uncertainty in the parameters of
the Hs reference system. The discrepancy in the absolute size of the cHect indicates
that part of the correlations is missing in our model. One might expect that these are
the specific correlations responsible for the logarithmic singularity; they are expected
to yield a major contribution in the range [t} < 0.1.

The model prediction AS,, ., reproduces qualitatively also the temperature de-
pendence of AS,,, figure 3. As a function of temperature, A Sy, has its maximum
value slightly below T, it decrecases with decreasing tempcrature, and disappears
below T ~ 1.3 K These properties agree with that of the experimentally observed
anomaly. The decay of A S, with decreasing temperature is, however, too slow.
The central peak of AS,, .., reaches its haif vafue at T = 1.74 K compared to roughly
T~ 19K for AS,,,. The decay of A S, depends on the value of the parameter
o’. At T, the IBG and the modified IBG coincide. For the pure IBG (a' = 0) the
decay sets in at a lower temperature and is less pronounced. On the other hand, a
larger value of o’ makes the decay steeper. We prefer not to use a’ as a fit parameter
for this detail because the over-slow fall-off is probably connected with the missing
critical correlations.

There is 2 corresponding decay of AS,,,, for increasing temperature above T;
the k- and |t|-dependences are similar for t < 0 and t > 0. The reproduction of
DSy for T > T, is of the same quality as that shown in figure 3.

Summarizing, we state that the anomaly can be qualitatively explained by the
correlations of the modified IBG. We emphasize that all parameters of the model are
fixed by experimental quantities which are independent of A S,

6. Discussion

The model proposed by Chester is the most simple but realistic ansasz for the density
matrix of “He with a phase transition at 7. In this model, the main features of the
considered anomaly are reproduced, in particular its k-dependence, its temperature
range and its reversal close to 7).

The model fails in reproducing the absolute values of A S,,, by a factor of 2 t0 3,
This is not too surprising because the entropy of the IBG (modified or not) at T
is 1.7 times higher than the experimental one. This means that in liquid helium
the particles are more ordered or correlated than in the 1BG model. The missing
correlations might be those which are responsible for the iogarithmic singuiarity at
T,.

Around k =~ 2 A-! the results by Gaglione ez af {7] are quantitatively superior 1o
ours. Their results depend, however, on the empirical expression for roton lifetimes.
Our results are, on the other hand, essentially fixed by the 1BG correlations. The
underlying physical ideas are quite different: Gaglione e al use the quasiparticle
model where an overdamping of the rotons leads to the reversal of the temperature



Spatial correlations in fiquid ‘He 3373

anomaly. We use the 1BG plus Jastrow correlations where the anomaly is related to
the phase transition of the IBG.

Discussing the approach by Cummings er a/ [6), Gaglione et a! [7] proposed to
measure S(k;T) along different isochores. In the quasiparticle model one expects
that the anomaly effect increases with the density. In the model of Cummings et
al a decrease is expected because all theories predict a reduction of the condensate
fraction n, with enhanced density. In our description the anomaly is related to the
mode! condensate fraction, but its effect on S(k) is decisively influenced by the
reference system (in particular, by the core condition). For a higher density the effect
of the core condition will increase. Preliminary calculations show a slight increase of
A Syeor With the density leading to a qualitative agreement with Gaglione et al .

The otherwise successfull variational ab initio calculations of Senger et al [10]
display neither a phase transition at T, nor a reversal of the temperature anomaly.
From our point of view, their ansaiz for the density matrix should be supplemented
by IBG related correlations.

The path-integral computations of Ceperley and Pollock [24] are in good agree-
ment with the experimental RDF g(#»; T') down to 1 K The results for g(r; T} contain
some indication of an anomalous behaviour. The structure factor S(k; T) in which
the anomaly effect is more obvious has, however, not been evaluated.

The exchange symmetry plays a decisive role for the A-transition; this follows
from the absence of this transition in liquid *He. The IBG is the simplest model
which takes the symmetry effects fully into account. The 1BG yields a phase transition
which exhibits a number of similarities to the A-transition; moreover, the unusual
hydrodynamic properties of He II can be understood in this model [25). In some
respects the IBG is similar to the nuclear shell model which is a quite successfull ideal
gas model for the strongly interacting nuclear liquid. Both ideal gas models are, of
course, unable to reproduce the two-particle correlations caused by the interaction.
A simple remedy of this failure is to supplement these models by Jastrow factors.
For the IBG this leads to the Chester model in which an at least semi-quantitative
description of the two-body correlations is possible. As we have demonstrated this
model is able to explain the temperaturc anomaly. This success might encourage
renewed investigations of IBG rclated models.

Appendix A. rRPA structure factor

In this appendix we present a shorthand derivation of the main result (21) of section 3
without wsing diagrammatic techniques.

We consider a reference system with the structure factor 5, and a perturbing
(dimensionless) potential w(r). The structure factor S of the whole system can be
written as [12]

- Sy

T 1—(&-8) 8,
Here & and &; are the Fourier transforms of the direct correlation functions for
the whole and the reference sytem, respectively. They are defined by the Fourier
transform of the Ornstein—-Zernicke relation,
(k)

S(k)’

S (44)

&k) = (45)
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The canonical way of introducing the RPA i

C—Cy R —W. (46)
Using the linearized HNC equation for the model correlations one obtains

Cyp R — W, 47

Combining the last two equations and using (45) for &, we get

Tk
(k) = Eok) % ey(k) = KL @9)
Su(k)
We insert this in (44),
- S Tv S
Sreal®) = Togrmye, S St oL T, “9

This is the wanted result.

Appendix B. Evaluation of 1BG correlations

In this appendix we describe the numerical evaluation of the structure factor and the
RDF of the 8G. All formulae apply equally well to the modificd IBG.
For N spinless bosons the structure factor is given by

Su(e) =1+ Ty(a) = NZ(a,, g O g (50)

Py

The operators a}, a, create or annihilate a particle in the state with momentum p.
They obey the commutation rule [a}, a,} = 8, .. The brackets in (50} denote the
quantum mechanical expectation value for the many-body states |..., v{p),...) and
the statistical expectation value. The statistical average is cffectively performed by
replacing the occupation numbers v(p) by their expectation values {v(p)) = n(p).
The average occupation numbers n{p) are given by (30) and (32).

Separating off the condensed particles, S,,(q) becomes

k
su@=1+220 w4 LS ap)apt )= 14 T4 T G

p¥Eka

As in section 3, k; denotes the lowest possible single particle state. The part T,
is determined by (30) and (32). For evaluating the contribution 7,  of the non-
condensed particles we introduce polar coordinates and replace the summation by an
integration:

v +°° —
T, = e / dk” n Lm T km) n ( &+ (& + q)z) . (52)
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The wavevector k is written as &k = k' + k" with k"¢ = 0, and v = V/N denotes
the volume per particle. We insert the average occupation numbers (30) and (32),
use the quantities
a(k'y = exp(—6&'%) Bk} = exp(—86(k'? + ¢%))
2
= :_; z = exp(—T2) (53)

and perform the integration over k”:

T, =- 81‘.26./ ar &= [ln(l-—za)_ln(l—zﬁ)]' 54)

« I¢)
We replace k' by &' — ¢/2, and introduce y = 2869k’ and - = ¢V/é. This yields
v 1 [ 1+ exp(—y) (l—zB_(y))

T, :—I—-——-—-/ dy ~—— 2 In | ————= 35

(9) Za e & T=exp(=y) 1-z2B.(y) ®2)
where

_ (y+ 72)2)
But) = exp (- 27 (56)

and

k [oe]
=1 k) _ TS _/_mdk’ In[1-zexp(—8k?)]. (57)

The integrals in (55) and (57) are evaluated numerically. The substitution xu? =
y—~? makes the logarithmic singularity at y = 0 numerically integrable. The integrals
remain finite for + — 0 and ¢ — 0 because the 1/g-factor has been split off. This
completes the evaluation of the structure factor.

For the mode] RDF (34) we have to compute the function Q(r) which can be
expressed by the sum (35) or by the integral

v 1 k sin kr
Qlr) = 272 fo dk exp(T24 6k2) -1 (58)

For small values of » this integral is solved numerically. For large r, say rfAp > 1,
this is no longer possible because the integrand oscillates too rapidly. We use then
the expansion

Q(r) = 13 (-i—. exp {(—2/wrz) + 2 Z exp (—A} z) cos (A7, :c)) (59)
T mzl1
where
AE = \Br (rf+an?m?) |12 r v 60
=2 (1 mim? T ArEm)IA (60)

and x = r/Ap. This expansion may be found in [16), equation (2.24).
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